Some of Douglas Munn's Contributions to Representation Theory of Semigroups

By Sanaa Bajri Supervisor: Dr. Brent Everitt

University of York, Department of Mathematics

May 9, 2018

Introduction

- On Semigroup Algebras
- 3 Matrix Representations of Semigroups
- 4 The Characters of The Symmetric Inverse Semigroup
- 5 Irreducible Matrix Representations of Semigroups
- 6 A Class of Irreducible Matrix Representations of An Arbitrary Inverse Semigroup

• Early works:

- In 1933, Suschkewitch.
- Since then, Clifford, Munn, Ponisovsky, Lallement, Petrich, Preston and McAlister.

• Douglas Munn's Work:

- In 1955, he completed his PhD thesis.
- In the period (1955-1962), he wrote 6 papers about this theory.

Introduction II

Munn's Papers:

[1] On Semigroup Algebras: Proc. Camb. Phil. Soc. 51, 1-15(1955).

[2] *Matrix Representations of Semigroups*: Proc. Camb. Philos. Soc. 53, 5-12(1957).

[3] Characters of The Symmetric Inverse Semigroup: Proc. Camb. Philos. Soc. 53, 13-18(1957).

[4] Irreducible Matrix Representations of Semigroups: Q. J. Math. 11, 295-309(1960).

[5] A Class of Irreducible Matrix Representations of An Arbitrary Inverse Semigroup: Proc. Glasg. Math. Assoc. 5, 41-48(1961).

[6] *Matrix Representations of Inverse Semigroups*: Proc. Lond. Math. Soc. 14, 165-181(1964).

Main theme

Connect the representations of a semigroup to the representations of certain associated groups.

Sanaa Bajri (University of York)

Basic Definitions:

Representation of a semigroup

Let V be a vector space of dimension n over a field F. A representation Γ of a semigroup S of degree n over F is a homomorphism from S to End(V), the semigroup of all linear transformations of V over F.

Irreducible representation

Let V be a representation space for Γ . Then V and Γ are irreducible S-representation if and only if the only invariant subspaces of V are $\{0\}$ and V itself (reducible otherwise).

Equivalent representations

Two S-representations Γ and Λ are equivalent $\iff \exists$ an isomorphism α such that $\forall a \in S$ the following diagram commutes:

$$\begin{array}{ccc}
V & \stackrel{\alpha}{\longrightarrow} & V \\
\Gamma(a) \downarrow & & \downarrow \Lambda(a) \\
V & \stackrel{\alpha}{\longrightarrow} & V
\end{array}$$

When a semigroup S is semisimple?

Semisimplicity

A principal series of a semigroup S is a chain

$$S = S_1 \supset S_2 \supset \cdots \supset S_n \supset S_{n+1} = \emptyset$$

of ideals S_i of S (i = 1, ..., n), and such that S_i is maximal in S_{i-1} . The Rees quotients S_i/S_{i+1} are called the principal factors of S and they are either (0)-simple or null. Then the semigroup S is called semisimple if it has a principal series and every principal factor of S is simple.

Munn's Theorem 8.7[12]

- Let S = S_{mn}[G, P] and {Γ_i; i = 1,..., k} be a complete set of inequivalent irreducible representations of G over F whose characteristic is zero or a prime not dividing the order of G.
- Let the algebra of S be semisimple.
- Then {Γ'_i; i = 1,..., k} is a complete set of inequivalent irreducible representations of S over F, where Γ'_i is the basic extension of Γ_i.

Clifford's construction of the representations of Rees matrix semigroup $S_{mn}[G, P]$:

Irreducible representations of inverse semigroup:

- (1) Let S be an inverse semigroup. Assume that S has a principal series.
- (2) Let $\{e_{ij}; j = 1, ..., m_i\}$ be the set of non-zero idempotents of S_i/S_{i+1} (i = 1, ..., n).

(3) Let F be a field of characteristic zero or a prime not dividing the order of any of the basic groups of any of the principal factors S_i/S_{i+1} .

(4) Let $\{\gamma'_{ir}; r = 1, ..., k_i\}$ be a complete set of inequivalent irreducible representations of S_i/S_{i+1} over F.

(5) Define the mapping γ_{ir}^* on S by the rule

$$\gamma_{ir}^*(x) = \sum_{j=1}^{m_i} \gamma_{ir}'(x^{\theta} e_{ij}),$$

where θ is the natural homomorphism of S onto S/S_{i+1} .

(6) Then $\{\gamma_{ir}^*; i = 1, ..., n; r = 1, ..., k_i\}$ is a complete set of inequivalent irreducible representations of S over F.

The Characters of The Symmetric Inverse Semigroup(1957)

The characters of irreducible representations of the symmetric inverse semigroup I_n are expressible as sums of the characters of irreducible representations of the symmetric groups S_r (r = 0, ..., n) over a field F with characteristic zero.

Definitions:

- A semigroup S is said to have a minimal condition M_f on the principal ideals if every set of principal ideals of S has a minimal member.
- Let Γ be a representation of S. $V(\Gamma) = \{x \in S : \Gamma(x) = 0\}.$
- Γ is called *principal* if S V(Γ) contains a unique minimal *J*-class of S. This *J*-class J is called the *apex* of Γ.
- The principal representation Γ is described by the rule:

$$\Gamma(x) \neq 0 \Longleftrightarrow J \leqslant J_x$$
,

where J_x is the \mathcal{J} -class of x.

The main results:

- There is a 1-1 correspondence between the irreducible principal representations of S and the irreducible representations vanishing at zero of the (0-)simple principal factors of S.
- For a semigroup *S* satisfying the minimal condition *M_f* on its principal ideals, then every irreducible representation of *S* is principal.

A Class of Irreducible Matrix Representations of An Arbitrary Inverse Semigroup (1961) I

The maximal group homomorphic image of an inverse semigroup: Let S be an inverse semigroup and let a relation σ be defined on S by the rule that

 $x\sigma y \iff \exists$ an idempotent $e \in S$ such that ex = ey.

Then we have:

① σ is a congruence relation and S/σ is a group.

If τ is any congruence on S with the property that S/τ is a group, then σ ⊆ τ and so S/τ is isomorphic with some quotient group of S/σ. The quotient S/σ is called the maximal group homomorphic image of S and is denoted by G_S.

A Class of Irreducible Matrix Representations of An Arbitrary Inverse Semigroup (1961) II

Prime representations of an inverse semigroup:

- If the vanishing set $V(\Gamma)$ is empty or a prime ideal, then the representation Γ is called a *prime* representation of *S*.
- Let S be an inverse semigroup and F be a field:
 - Let Γ be a prime irreducible representation of S over F and let V=V(Γ). Then S \ V is an inverse semigroup and

$$\Gamma(x) = \begin{cases} \Gamma^*(\bar{x}) & \text{if } x \in S \setminus V, \\ 0 & \text{if } x \in V, \end{cases}$$

where $x \to \bar{x}$ is the natural homomorphism of $S \setminus V$ onto $G_{S \setminus V}$, and Γ^* is an irreducible representation of $G_{S \setminus V}$.

2 Let V be the empty set or a prime ideal of S. Then $S \setminus V$ is an inverse semigroup. Also, if Γ^* is any irreducible representation of $G_{S \setminus V}$, then the mapping Γ is a prime irreducible representation of S.

Thank You!

Image: A matrix

- Clifford, A. H.: Semigroups Admitting Relative Inverses, AJM **42**, 1037-1049 (1941).
- Clifford, A. H.: *Matrix Representation of Completely Simple Semigroups*, AJM **64**, 327-342 (1942).
- Clifford, A. H.: Basic Representation of Completely Simple Semigroups, AJM 82, 430-434 (1960).
- Clifford, A. H. and Preston, G. B.: The Algebraic Theory of Semigroups, AMS I, (1961).
- Everitt, B.: *The Sympathetic Sceptics Guide to Semigroup Representations*, University of York, (2016).
- Gould, V.: *Semigroup Theory*, University of York, (2017).

- 4 ∃ ▶

- Green, J. A.: *On the Structure of Semigroups*, AM **54**, 163-172 (1951).
- Hollings, C.: Mathematics Across the Iron Curtain: A History of the Algebraic Theory of Semigroups, AMS **41**, (2014).
- Howie, J.: *Fundamentals of Semigroup Theory*, Oxford University Press Inc., New York, (1995).
- McAlister, D.B.: *Characters of Finite Semigroups*, JA **22**, 183-200 (1972).
- Munn, W. D.: *Semigroups and their algebras*, Ph.D. thesis, Cambridge, (1955).

Munn, W. D.: On semigroup Algebras, PCPS 51, 1-15 (1955).

- Munn, W. D. and Penrose, R.: A Note On Inverse Semigroups, PCPS 51, 396-399 (1955).
- Munn, W. D.: *Matrix Representations Of Semigroups*, PCPS **53**, 5-12 (1957).
- Munn, W. D.: *Characters Of The Symmetric Inverse Semigroup*, PCPS **53**, 13-18 (1957).
- Munn, W. D.: Irreducible Matrix Representations Of Semigroups, QJM 11, 295-309 (1960).
- Munn, W. D.: A Class Of Irreducible Matrix Representations Of An Arbitrary Inverse Semigroup, PGMA **5**, 41-48 (1961).
- Rees, D.: On Semigroups, PCPS **36**, 387-400 (1940).